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1 Summary

The statistical properties of a cubic smoothing spline
and its derivative are analyzed. It is shown that unless un-
natural boundary conditions hold, the integrated squared bias
is dominated by local effects near the boundary. Similar effects
are shown to occur in the regularized solution of a translation-
kernel integral equation. These results are derived by developing

a Fourier representation for a smoothing spline.

ii

N

e e

P o TR



g SECURITY CLASS FICATICN OF TniS PAGE (When Dete Entered)
READ INSTRUCTIONS
§ REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
] T REPCRT NUWAER - 2, GOVT ACCESSION NG| 3. RECIPIENT'S CATALOG NUMBER i
; AN-A17% ¢ 31 -
‘ 4 TITUE (and Sukciiles S. TYPE OF REPORT & PERIOD COVERED
SMOOTHING SPLINES: REGRESSION, DERIVATIVES Research
AND DECONVOLUTION 6 PERFORMING CAS. REPORT NLMBER
7. AJTnOR(e) 8. CONTRACY OR GRANY NLMBER(S)
X -81=K=0) b
John Rice and Murray Rosenblatt N00O14-81-K-0003
® PERFOAMING JASANIZATION NAME ANO ADDRESS 0. PROGMAM ELEMENT PACIECY, TASK
AREA & WORK UNIT NUMBERS
Department of Mathematics
! Universitv of California, San Diego -
4 La Jolla, CA 92093
. ti. CONTROLL-NG OFFICE NAME AND ADDRESS 12 REPOMT DATE
(‘f{fice of Naval Research November 1981
Arlington, VA 22217 13. nunc!n309r FaGES
4 MON TORING AGENCY NAME & ADDRESS(i! Jdifferent from Coaatrolling Olllce) 1S, SECUR{TY CLASS. ‘af thia report)
UNCLASSIFIED
- 18a. DECLASSIFICATICON. DCWNGRADING
SCHEDULE
16. DCiSTRIBLUTISN STATEMENT (of this Report;
Distribution of this document is unlimited.
- 17, CISTRIBUT.ON STATEMENT (of the abstract entered In Block 20, if dilterent iroar Repart)
3
Lk
’ 8. SUPPLEMEN-ARY NOTES
19. MEY WORQDS /Continue on reverse eide I necessary and identily by black number)
spline, smoothing spline, regularization, deconvolution
] 20. ABSTRACY  Continue on reverse aide il neceseary and tdentily by dlock numbder)
- The statistical properties of a cubic smoothing spline and its derivative are
i analyzed. It is shown that unless unnatural boundary conditions hold, the
: integrated squared bilas is dominated by local effects near the boundary.
.7 Similar effects are shown to occur in the regularized solution of a trans-
3 lation-kernel integral equation. These results are derived by developing
. a Fourier representation for a smoothing spline. .
‘ ) I
‘ /
\ DD ,in", 1473 €oimion oF 1 nov 8815 oRsoLETE ]
X $/N 0152-014- 8601 — e UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS A A3E (When Dete Bntered;




1. Introduction and Summary

We consider statistical properties of smoothing splines and related
procedures. Given X = f(ti) + €ys 1=1,,..,n where g 1is an unknown
smooth function and the ey are random errors, a cubic smoothing spline

g(t;)) 1is the function which minimizes

n
1Y txse 1?4 /(g‘(c))z a . (1.1)
i=1

Smoothing splines were proposed by Whittaker (1923), Schoenberg (1964), and
Reinsch (1967)., Some analysis of their statistical properties in the case
that g and f are periodic appears in Wahba (1975) and Rice and Rosenblatt
(1981). The method of cross validation for choosing the smoothing parameter

A from the data has been discussed in Craven and Wahba (1979).

Smoothing splines may be viewed in a larger context. Given X, =

(Af)(ti) + €, where A 1is a linear operator, a "regularized" estimate of

i
f 1is the function g which minimizes

23 |

n

2 x - (e)1% + 2 f e™en? e . (1.2)
1=1

Frequently Af 1is of the form

(Af) (t) = /k(t,s)f(s)ds . (1.3)

Many examples of this type may be found in Tikhonov and Arsenin (1977).
The method of regularization is used to control the instability that would

arise if one tried to invert A or A*A, The regularized solutiomns have a

formal resemblance to ridge-regression estimates; in both cases the variance

= T £ e
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3 of the estimate is reduced at the cost of increasing bias. Although

there is a large literature on this topic, there has been relatively little

analysis of the statistical properties of the solutions. i

In this paper we examine two cases of (1,3), numerical differentiation

t
(Af) (t) = / f(u)du (1.4)
0

and deconvolution,

1
(Af) (¢t) =/ w(t-s)f(s)ds . (1.5)
0

. We next summarize and discuss our main results, Derivations and some
further results are contained in later sections. We first deal with a

cubic smoothing spline,

Consider observations

i x.k = f(k/n) + ek, k = 0,1,000,“
i

. with £ continuously differentiable, f£* ¢ L2 and the € random variables
. with
" E € =0 .\
| E 5 2 2 j
, €L 5= %,3 o, c >0, :

We wish to determine a continuously differentiable function g = g(t;)\,n)

{ Iy
with g* € 12 that minimizes i




o S
=17 Kot*e(0-s(1)) " + (x, g (k/n)) {
l k=1 ‘ (1.6) i

1
+ x/ (g“‘(t))2 dt .
J0

Here A = A(n) > O and the object is to determine A(n) as a function of

] n so that

1
fo E[g(t)-f(t)]2 dt

tends to zero as n + « at a rapid rate. The term

3 xgtx) - 3 (2(0)+g(1)

appears in (1.6) because one wishes to allow for the possibility that

£(0) # £(1) and in that case the Fourier series of f(t) will converge to

% (£C0)+£(1)) at t = 0,1,

5 Theorem 1., Let f € Cz. If )\3(n)n8 +oo A(n) >0 a8 n > then
i

‘ 2.-1/4

2 fczfg(t)]dt e_rﬁ'-l‘-;——— 3-2'7/2 .

=
B Theorem 2. Let £ € C°. Assume that A>(n)n® + @, A(n) >0 as n -+ =,

Then if £2 0 or £ (1) 40 :

/[E g()-£(0)12 daex (@D )2 + @ a2y 134 732 .

white if £20) = £ @) =0 but £ #0 or £3(1) #0 we have '

s i P R -_—
R . Y L ©0 : R Wu-.wv;:m-w
. . v e, y ALy
. ) N S " R . N . : N . .




f{s g0)-£(0)12 ac = (P on? + P an?

W -3/2 .,

4 3.2

A common reason for nonparametric data smoothing is to calculate an

extimate of the derivative of a function. Schemes for numerically differ-
entiating noisy data that are closely related to the derivative of a smooth-
ing spline have been proposed in Cullum (1971) and Anderssen and Bloomfield

(1974) . The properties of the derivative of a smoothing spline follow

fairly directly from the properties of the smoothing spline itself.

Theorem 3, If f € C2 and if AR’ > © g8 n o and

A+ 0, then
' 2
f 2(g*(t))ae = & AL T2 Y2y
0

Theorem 4. Asswme that f € Ca, and that Ans + o, Then 7

f(z)(o) $# 0 or f(z) $£0

1
/ (£ g~ (0)-£-(0)1% dt = (¢ D2 + P an? 3432732
0
i £ P =P -0, tut £ or ) 40 then ?
1
/ (£ g~ ()-£-(0)1% de = (£ P 0N+ P an?d/é.3. 2732 A
0

T e o e e

Comparing these results to Theorems 1 and 2 we see that the variance and

integrated squared bias of the derivative are a factor of A-llz larger than

the variance and integrate square bias of the function itself.

* . a WA Sy ki




Theorem 2 shows that the integrated squared bias is dominated by con-
tributions from the boundary unless g satisfies the condition g(k)(O) =
g(k)(l) = 0,k = 2,3. Lemma 6 of section 3 gives a local approximation
to the bias in the case that these conditions are not met. Roughly, the
-1/2}\-1/4t

bias decays like exp (-2 ) trigonometrically modulated. In the

interior of [0,1] the squared bias is proportional to XZ.

These results are not unexpected. The smoothing spline is a "natural"
spline and satisfies the two arbitrary end conditions f£7(0) = £f*(1) = 0.
In the context of pure interpolation the use of a natural spline is usually
not recommended since the error near the ends is of order h2 where h
is the mesh size whereas other methods can produce an error uniformly of
order h®, 1if £ € c%, de Boor (1978), Powell (1981). Similarly, it can
be shown that the boundary effect dominates the integrated squared error,
Rosenblatt (1976). In the nonstochastic framework methods of estimating
the boundary constraints have been proposed in these references and it

would appear plausible that a similar approach might work in the stochastic

case.

Natural splines in the nonstochastic setting and smoothing splines in

the stochastic setting are the optimal solutions of certain minimax problems,

Powell (1981) and Speckman (1981). It appears that flexibility is lost by

guarding against worst cases.

Smoothing splines have also been proposed in the case of spectral

density estimation (see Cogburn and Davis (1974) and Wahba (1980)). Boundary
effects similar to those studied here occur in the case of periodic smoothing

splines unless the function is smoothly periodic (see Rice and Rosenblatt (1980)).
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The aliasing in the case of spectral analysis of discretely sampled data

implies that boundary behavior will not be smooth in this context.
In the deconvolution problem we consider observations

= F(k/n) + ¢ k =0,...,n

*x K’

where F(k/n) = &; w(k/n-u)f(u)du, with £~ ¢ L2 and the € uncorrelated
random variables with mean 0 and variance 02. The regularized approxima-
tion to f is the function g that minimizes

n-1

% (xo+xn-G(0)-G(l))2 + %z__:_l (xk—G(k/n))z

1.7)

1
+ A ( (g”(t))z dt .
<0

Here G(k/n) = &} w(k/n-u)f(u)du. The kernel of the integral equation, w,
is the periodic extension of a function defined on [0,1], and it is
assumed that w € L2. We assume that the Fourier coefficients W of w
are nonzero for all k.

The constants that occur in the asymptotic expressions for the compo-
nents of the integrated mean square error depend on the exact form of w,

but the rates of decrease depend only on the rate of decrease of the Fourier

coefficients Wi of w. Paralleling Theorems 1 and 2 we have

2 28

- 28+
Theorem 5. Let f € C° and suppose that Iwk(2~ k °, 820, If An AR




/Uzlg(t)]d: ~ oL m(26+1)/(28+4) .

4

-28

Theorem 6. Let f € C and suppose that Iwk|2~ k 7, B>0 and in

as n->»  Then 1f £*(0) or £*(1) # 0

/IE g(t)—f(t)]2 de ~ 13/ (28+4) ‘

If £%0) = £%1) =0 but £3D@ or £3) #0, then

/[E g(£)=£(£)1% de ~ 2/ (28+4)

r £ W) = M), k= 2,3 then

/[E g(£)-£(t)]2 de ~ 28/ (28+6)

Analytic expresslons for the approximate local bias are not available,

but the qualitative behavior is similar to that of a smoothing spline.

Note that if w is very smooth, B 1is large, and the integrated

mean square error will tend to zero relatively slowly.

28+3
+ o
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2. Examples

The function £f(t) = cos (2nt) + &4 cos (nt) satisfies £*(0) = -8n",
£(1) = 0, £*(0) = £*(1) = 0., Figures 1 and 2 show the exact bias of
the smoothing spline estimate of the function and its derivative for 50
equi-~spaced sampling points and X = 10-6. The effect of f™0) is clearly

evident. The asymptotic analysis (Lemma 6) predicts that the bias,

b(t) = £ /2 exp (-t 271/ 2714

-1/2A—1/4) -l/ZA—l/&)]

- cos (t 2

e[sin (t 2

From this expression we see that the first zero-crossing of the bias should

occur at t = nkll& 2-3/2 = ,035 and that b“(t) should be zero at t =

nkl/4 2_1/2 = ,070, which is borne out in Figure 1. Figure 2 shows that

the bias of the derivative is larger by a factor of about X—I/A.

We next consider the deconvolution problem wherein f 1is convolved
with a function w, the graph of which is an isosceles triangle centered
at 0 with height 20 and base .4. This is intended to correspond to a
situation in which averaged values of f are measured with error. Since
the analysis of section 4 requires that w be periodically extended, the
triangle is also centered over -1 and 1. To calculate the bias, (1.7)
was discretized assuming 25 equi-spaced observations and the solution was
computed at 50 equi-spaced points. Other mesh sizes were tried to insure
that the results did not merely reflect the discretization. The calculations
were done on a VAX 11/80 in double precision. Figure 3 shows the bias for

A= 10-8; there is a clear effect near 0 and also an effect near 1. The

shapes are qualitatively similar to Figure 1.




Since the assumption that w is periodically extended is clearly
somewhat artificial, we also computed the bias for w just correspond-
ing to a triangle centered over 0., The resulting bias is shown in Figure 4.

Here the only effect is near 0; the effect near 1 of Figure 3 is apparently

due to the periodicity of w.
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3. The Smoothing Spline and Its Derivative

In this section we derive Theorems 1-4 and some auxiliary results.

In order to do this we carry out a Fourier analysis of the smoothing spline.

Notice that

1
_ 2nikt PR ¢ S |
B = fo e g(t)dt = Ag a, Ag bk + hkbk (3.1)
for k # 0 where
o0 = g(1) - g(0)
1 . .
bg” = g“(1) - g~ (0)
1
hk =f ezniktg"(t)dt .
0
Let
l'( +x ) if =0
y. = 2 ‘%0 *n ]
h|
X if j=1,...,n-1
and set
n-1
~ 1
y, = —~— y, exp (2wnijk/n) .
I &5 h|
Given a sequence of coefficients P Ve will let pén) denote the correspond-

ing set of aliased coefficients arising in a discrete Fourier analysis
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(n)
Also let
~(n) _ (n) _ _ _
Po Po Po Zpsn
s¥0
and
s _% 0 (n) (n)
Z, = - Ag ak + Aglbk R k=1,...,n=1. (3.2)

n

Lemma 1. Let f and Ago, Agl be given. Assume that f,g are continuously

differentiable with f£7,8™ ¢ L2. Then the function g minimizing (1.1) 1is8

determined by the following specification on Fourier coefficients:

y
20 _, 0x(n) 1, (n)
8, g ay "’ + Ag bo ’ (3.3)
n
hsn =0 for s#0, (3.4)
=Ll v, (3.5)

hk+sn - )\+rk k+sn 2k

for k =1,...,n-1 and integral s. Here it is understood that

T, =§ (2m(k+sn))? .

The Parseval relation implies that (1.1) can be rewritten as




12

-~ n-1 A

y 2
0 ~(n) z : 0 (n) 1 (n) (n)

—-g -g + Ag b (h b )

Ja 0 0 k=1 V& k k

(3.6)

A
1,2 2 2

A (TR DD INNLED DL
[ k#O; k+sn sf0 o0 |

In minimizing this expression, one can separately minimize the sum of the
terms with k fixed for each value of k. Minimizing for k = 0 leads one

to (3.3) and (3.4). For k # 0 we have

= (2 (n)
}‘hk+sn (zk - (hkbk) )bk+sn * (3.7)

Multiplying by bk+sn and summing over s leads to

(h b )(“) ”’k (3.8)

and this together with (3.7) leads to (3.5).

Lemma 2. Imgert (3.3), (3.4) and (3.5) in (3.6). Minimizing the resulting

expression with respect to Ago, Agl leads to

n-1 — ' sn-l )-1
gjl Za" O (2‘"1 lalﬁ“)lz/(mk)‘ (3.9)
=1 v/n =
and
‘n—l A ‘ n-‘l ) -
Agl = - ( ~ 7—; b1(<n) ! ( +rk)’ ll + %;1 |bl((n)l /()\+rk)‘ .

(3.10)

B witagend aay

face

g i




If we insert (3.3), (3.4) and (3.5) in the expression (3.7), the result

can be written as

n-1 2

ragh]? + a :E: x+r . (3.11)

Minimizing this expression with respect to Ago and Agl leads to the

following equations

n-1 ~ —(n)
%k ;
T =0 (3.12)
k=1 k
(n)

(3.13)

b +2

On solving for Ago, Ag1 the expressions (3.7) and (3.10) are obtained.

Lemma 3. The function g minimizing (1.1) has Fourier coefficients

y
= —9-+ Ag b(n)

g
o &

0
B, = Ag a_ - Aglbsn for s+ 0

and for k =1,...,n-1 and s 1integral

= AoD 1 2 (n)
gk+sn be [ak+sn - A+rk | k+sn‘ ]
- 8g' b 12 6$)

. |b
k+sn )\+rk k+sn




T

with 8g°, ag' given by (3.9) and (3.10).

The fact that 5(()“) = 0 and (3.3) holds lead to (3.14). Also (3.4)

and (3.5) inserted in (3.1) yield (3.15) and (3.16).

The integrated mean square error of g(t) as a function of f(t) is

1
/ E[g(t)-£(t)]° dt
0

1 1
= / var(g(t))dt + f (E g(t:)-f(t)]2 dt . (3.17)
0 0
Moreover
1 ®
/ var(g(t))dt = var(go) + 2 Z var(gk) . (3.18)
0 k=1

It should be noted that the gk's are complex-valued random variables. The

covariance of two complex-valued random variables U,V is understood to be
cov(U,V) = E{(U-EU)(V-EV)} .

We shall now derive Theorem 1. Notice that Ago and Ag1 are real even

though they are written in complex form. It is clear that

cov(§j,§k) = laj’k - -21;]02 (3.19)

for j,k = 0,1,...,n-1. From (3.19) it follows that




b ik

2,, 0, o ~ (n) |2 2
o“(8g") = % Ehing /(“"k)‘
|
l

a2/ ‘“’k’}-

Since
n=-1
kZI lalﬁ“)l2 NESEEDY | 2k | 2
= <
ME:
~ 1=3/4
A C1 ,
n-1
Z | (n)lz/(Hr 32 o "4
k= k
n-1
(n) 2 R VA
};1 Ibk | /()\+k) & A
n-1
(n) 2 2 =5/4
k2=1 b, | /(x+k) o A
where

c -‘/P dx
4
3 |2mx| %41

.-
-]

2

Ib‘(c“) |2 / ()\+rk)2 :

-2

(A+rk)‘ .

/ (| 2k | %41)

6
|2ﬂx| dx ,

(|21rx|a+1)2

4
|2ﬂx| dx

(IZ“XI4+1)2

15

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

| AON oA i, 7 A 3

.



if A(n)nb +® ag n -+ o, it can be seen that

2

2,0 ,,0 -2.-1/4
o~ (ag) ®— 02C1 A . (3.26)
2, 1. _o%  =2.-3/4
o (Ag7) = C4C3 A . (3.27)
if A(n)n4 +® as n -+ «, The term
n=-1
) b, |2 a(™)2
- a (3.28)
s k=l k+sn )\+rk k+sn

occurs as a coefficient of oz(Ago) in contributing to (3.18). However,

(3.28) can be approximated by

6
l22 lamik}” ., 1/4

o (3.29)
k (A]2nk|“+1)2 2
1 . 4
with an error 0<; if A(n)n + » as n +> o, The term
)20 30
1 2 (n) 2
b - L. l (3.30)
s kel k+sn )\+rk k+sn

arises as a coefficient of oZ(Agl) in contributing to (3.18). An estimation
procedure similar to that used in arriving at (3.39) shows that (3.30) can be

approximated by

4
22 L2k’ 304 (3.31)

k (A|2nk|"+1)2

4
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with an error 0(35] if )‘B(n)n8 + ® 35 n > ®, The estimates obtained
n
for (3.28) and (3.30) imply that the contribution to (3.18) from the

terms involving Ago and Agl in (3.16) is

if )\3(n)n8 +« as n > ©, Now consider the contribution from the last
term on the right of (3.16). We shall see that it makes the major contri-

bution to the integrated variance. The expression

n-1 I 4
L
2L ) g L (3.32)
s k=1 !X+rk|
can be approximated by
-1/4
L tel ¢ (3.33)
0< k| <2 (|2nk|*+1)
2
where
dx Tl
o o, ;
3 (| 2nx] *+1)2 f

with an error 0[%} if )\(n)n3 > ® ag n + », Theorem 1 follows

from these estimates.

Our next object is to derive Theorem 2 for the integrated squared bias ¥

of g as an estimate of f. Notice that for k # 0 we have




1
_ 2nike IV T |
fk l e f(t)dt = Af a, Af bk + mkbk (3.34)

with 1

1
m = j( o2kt euiyge . (3.35)
0

Using (3.34) it is clear tha*

d n-1
1 3 (n)
= (£(0)+£(1)) = Z £ = £
2 k=—o K f=0 ®
1(j/n) = }E: fk exp (-2mijk/n) (3.36)
n-1
= Z flin) exp (~2nijk/n), j=1,...,n-1 ,
k=0
This implies that
E ,//n = fj(“), j=0,1,...,0-1 . (3.37)

From (3.34) it follows that

)(n)’ j =1,oo.’n-1 .

(n) _ A0 . (m) _ .1 (n)
£ Af"ag 7B, + (myb,

Relations (3.9), (3.10), and (3.37) imply that
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E Ago = Af +;E (mkb )(n) (n) /(X+r )I

“|
- ‘ I o
(2 \a(“)\z/ Ok, ) (3.38)

k=1 ’

and
n-1
E Ag = Af [ ;1 + kzl |b(n)|2/(x+rk); 1]
’} ‘ S (n)y (n)
E z ( b, ) /(A+r)

b=

n-1

I
‘1 £, lb(“)|2/(x+r ) - . (3.39)

=

Since we are dealing with real-valued functions f it follows that

M = Mg

and

A (n) _ ~—5—(n)

b (mkbk) (m'kb—k) .

g These last two relations together with (3.38) and (3.39) imply that

3

i | 0 o ‘ >y (27k) Im mk’ ‘ (21rk) ' -1

f ' E Ag -0 = - (3.40)

| &% 1on|2mk) f == 1+x\2nk|"$

and




1,1 Eke“‘k"

E Ag -Af" = -

S U

k=—o 1+)\|2nk|4‘ lk=-°° 1+A|2"kll'$

If f € C3 one can see that

1
Re m = f f*(x) cos 2mkx dx
0

1
= f % {£(x)+f“(~x)} cos 2nkx dx
0

and
1
2tk Im m = 21k / £“(x) sin 2nkx dx
0
1
= - Af2 + f f(3)(x) cos 2nkx dx
0
1
= = Af2 + f -;— {f(B)(x) + f(3)(—x)} cos 2nkx dx
0
with
af? = £ By - Doy .

From (3.16) it follows that for k =1,...,n~1

’

20

(3.41)

(3.42)

(3.43)




F i

2
ol Pusl” ol
_ - _ k+sn (n)
E gk+sn 1:-k-O'sn (E Ag At ) ' k+sn H-rk k ‘
1
2 y
1 ‘ |bk+sn‘ ()i
- E Ag-Af ) l k+sn-Trk——bk ‘
2
b, |
(n) \ k+sn
+ (mkbk) )\+rk -mk+snbk+sn * (3.44)
Further, if f € Cl‘ we have
m = Afzak - Af3bk + f{a)bk (3.45)
with
a2 = £ @y - £ @0y ,
1
f‘(f) =[ exp (21rikt)f(4)(t)dt .
0
The last term on the right of (3.44) can then be rewritten as
2
1By gn!
2‘ (n) '“k+sn
of ' ) ).+rk - ak+snbk+sn
2
-Af3‘(b )(n) |k+snl W2 )
)\+rk k+sn’
‘ (4), 2, (n) ‘bk+sn|2 (4) |
(f b ) —_—— - f b (3.46)

k

AT k+2n k+sn‘ .
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Let
n-1 ‘ |2 :
Ao(t) = - zs: § )(n) -—lg:f'—:* - b12<+sn’ exp (-2ni(k+sn)t) , ‘
- ‘ (n) 'bk+sn'2
Al(t) = —2 - (ak k) - ak+snbk+sn exp (-2ni(k+sn)t) ,
s k=1 k ‘
n-1 2
(b, 1 )
Ay(e) = Z Z- : k+sn l;::n bl(cn)' exp (-2mi(k+sn)t) , :
s k=1 k ‘ :
n~-1 2
b o |
A3(t) = z E ‘ak+sn I;I:n aén)l exp (-2mi(k+sn)t) .
s k=l | K |
Set

(2mikyd

4 exp (-2nikt), §=0,1,2,3 .
k#0 A (27k) +1

Bj(t) =

Lemma 4. If k3n8 +o X >0 a8 n > then

1 12
/ lAj(t)-Bj(t)lz dt = o(x 4 ) §=0,1,2,3 . (3.47)
0
7-2

Also &; ]Bj(t)|2 dt tends to zero at the rate of A 4 s §=0,1,2,3.

The estimates required for this lemma parallel those used to obtain

(3.29) and (3.31).

1
]
:
y
3
:

. B,.(t)'s. A contour integration shows that

3

We wish to get more convenient representations or estimates of the
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itx _ ~%
-Lfe ax = L 12 (o hy & sin(le2 Yy

Successive differentiation then indicates that

iex -3
Cl(t) =4 [e Zx dx = - -12- e-,tfz sin(tZ-‘}) .
1+x

[}

itx 2 -3
1 fi—-(—i—ﬁ—dx L 2T e - cos (27

C,(t) = 5
| 2 2m 14x” 25
L Y ST S “fef27 -
: C,(t) = — —=——dx = - sgn t e cos (t2 °) .
. 3 2n 1+x4 2

An application of the Poisson summation formula tells us that

| 33
o Bj(t) =4 }: Cj((k-t)ia Y. (3.48)
k

Only the terms in the sum (3.48) corresponding to k = 0, k = 1 need to

be considered since the sum of the remaining terms die off at the rate

-
~ai f s R
e with o a positive constant. Notice that the formulas for the

Cj(t) above imply that

while if Bf° =0 )
;
+

C,=C, =——., ,

] 1 3 2/3 |
I

k 1 Lemma 5. Assume that f € CA. Then i1f Af2 £0
i
"' |
E E ag0-a£0 = ~ 21/ 24¢2 (3.49) l
{ |
! {4
1 2
b,
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B 2g%-ae% = 27524 2 (¢ 0y + £y, (3.50)
= £20) + £ D) 40 we have
£ sg-atl 2 - 2234 L ¢ P + 1P ) (3.51)
and if £ P ) + P @ =0
E Agl-Afl ~ aeh1/? (3.52)

as X = A(n) = 0.

The asymptotic relations (3.49) and (3.50) follow from (3.40), (3.43)
and (3.45). Formula (3.51) is a consequence of (3.41) and (3.42). If
f(z)(O) + f(z)(l) = 0, since Z Re m = %-(f(z)(o) + f(z)(l)) one can

see that

4
Re A(27k) " Re
Y, — mk7= -3 Amk . (3.53)
1+A2 (27k) 14X (27k)
However by (3.45)
3
Re m = 2 L1 f% @) + £ (cx))cos 2nkxdx  (3.54)
(27k) (27k)

This implies (3.52).

Lema 6. Let £ €ct. 1F £ ) 0, £P) =0 then

e g =y o= -
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—tz'*x'*

E g(t)-f(t) = f(2)(0) Aie [sm(cz'*x'*) - cos(:z"“x'*)]

+ e(t) , (3.55)

5 0 < t <1, where the error term e(t) 1is such that

l /e(t)z dt = °</[E g(£)-£(r) 12 dt) . (3.56)

r P =P =0, P40, £ P =0, we have

e~

E g(t)-£(t) = £ o34 /7 e cos(t2 A7) + e(o) (3.57)

0 < t <1, where the error term again satisfies (3.56).The approximations
appropriate for the cases f(z)(O) = 0, f(z)(l) $# 0 and f(z)(o) =
f(z)(l) =0, f(3)(0) =0, f(3)(1) # 0 .oe obtained by replacing t by

1-t in the main expressions on the right of (3.55) and (3.57) respectively.

We next consider the variance and bias of the derivative g~ of the
smoothing spline. Theorems 2 and 3 follow from the previous analysis of g,

after noting that the Fourier coefficients of g° are

go = Ago (3.58)

0

Y a
g =&l —ah k4o, (3.59) !

We first consider the integrated squared variance

KDL
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From (3.26),

As in (3.16)

. _ = 1 __1__ (ﬂ)
ak+snAg ak+snhk+sn ak+snAg (1 A+rk bk+snbk )

(n), O ak+snbk+sn ZE

+ a Ag - (3.60)
k+snak A+rk oy

Estimates similar to those used in the analysis of the smoothing spline

show that the contribution to the variance from the first term is of order
A-%n-l. The second term gives a contribution of order A-%n-l' the third

’
term dominates, giving a total contribution to V

o ﬁ Z 2mik]?
n A (2mik) %172
2 ® 2

> f”“[ L (3.61)
n —o ((27x) +1)

Next, the bias:

. . 1_ .1
E 8l4gn ~ fk+sn - ak+sn(E A AE7)

- ak+sn(E hk+sn - mk+sn) (3.62)

which, as in (3,44)
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(n)
b a a
4]
= (E 8g _Afo) k+snxt-:sn k
k
(n)_(n)
b a b
1 1 r k k k+sn
+ (B og - ay o - M ]
L k
(n)
- a (mkbk) b1<+sr1 _ (3.63)
k )\+l‘k Metsn| ° °

Making approximations as in the analysis of the spline function itself,
£ g (6)-£-(t) = (E ag0-a£% + (£ 2g%-2£%) 171 By(0)
+ (E Agl-Afl) B3(t) + AfZBZ(c) - Af3Bl(t) .

Using the Poisson-summation approximation and Lemma 5 if f(z) (0) # 0,

£y =0,

Egi(t) - £°(t) = f(z)(O) 2% Ai e ¥ cos u

where u=2 2% 12 @y = @A) =0, and P00, £ =0

E g°(t) - £°(t) = - f(3)(0) )‘* e (sin u + cos u) .

Note that the approximate (in an L2 sense) bias of the derivative is

the derivative of the approximate bias (Lemma 6).
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4, Deconvolution

We now sketch the development of the deconvolution results. Since
this parallels closely the derivations of Section 3 the presentation will

be somewhat sketchier. As before let g have Fourier coefficients

0 1
g, = 88°a - Ag’b + hkbk k#0 (4.1)
and let
Cp = vk &
Ay = v 3
B = v Py

and define yj as in Section 3. Then (1.7) may be written as

n-1 «

Yo _ c ~(n)

/a VI

+ 2 |agh? + Z )D |hj+sn . (4.2)
s

(n)

Minimizing the 0th term gives hsn =0, s #0, and G0 + G(n) yo//;.

As in the analysis of Section 3, we first fix Ago~ and Ag1 and

If

minimize with respect to the hj's.
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- AgoA§n) + Aglnj(“) .

5\'L‘<»

Then (4.2) becomes

Z |. (n)l +)‘[(A8) +E Z IHk+sn k+snl-2] (4.3)

The minimizing coefficients can be calculated to be

z
=B, (4.4)

hj+sn - Bj+sn A+pj

®©

where pj = sjlw lBj+sn

|2 Now to calculate the minimizing Ago and Agl,

this solution is substituted back into (4.3) to give

‘a2 -1 1.2
A Z lzjl (Hpj) + A (ag)° . (4.5)

Minimizing this with respect to Ago and Agl amounts to solving two

linear equations in two unknowns, and it may be seen that the solution

is approximately

= ‘Rez‘%“?) (wp'l' "Z' g1 (“’Pj)-l"-l , (4.6)

l 1

Ag ‘Af +Re2‘zj- (m) (+p,) 1: =1 +Z|n(“)| Otp)” ‘

o

B

e r oy T e

rE T Pz e s g
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3 We next consider the integrated squared variance, which is the sum of
5 the variance of the Fourier coefficients of g. Now, from above, ;
!
|
- (n) |
g -~ A 0 a - Ibj+sn| wj+snAj j
J+sn 8 j+sn )\+pj i
' 2— (n) '
+ Agl b _ lbj+snl Ej+sn?1
j+sn )\+pj
2
lBj+sn| Yy
+ N . (4.8)

Via approximationssimilar to those in Section 3, it may be seen that the

first two terms contribute a net variance of order n-lk-26/<28+b) whereas

the third term contributes the dominating variance, which is of order

oLym(2841)/(28+4)

If we write the Fourier coefficients of f as

: = af% -
,, £, = 4%, - af'b, +m (4.9)

and take expectations in (4.8), the bias of the (j+sn)th Fourier coefficient

may be expressed as

! 2— (n) :
' E _f = (E A o_Afo) a _ ‘bk+snf Yitsn'k f
. Br+sn Tk+sn & k+sn APy :
' H
. - (E & l-Afl) b - |bk+sn wk+san :
3 8 k+sn Ao :
. b
9 (n) e
n .'L
+ lbk+sn| wk+san _ b (4.10) i

- )‘+pk Me+sn k+sn ° '

e b ]
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As in section 3 for |k| = n/2, k$ 0

Aak

E g,~f, = (E 8g%-20) >
A+(B, |

Abk

A+|B

& agl-agly

Wl
Aa, b
+ a2 Rk
x+|3k1

2
3 by

- AT —,
2
A+lBk|
Af{a)bi
+— . (4.11)
x+|Bk|

If we let

. b-5
D (t) = A}E: —Ji———i-exp (-2nikt) §=0,1,2,3 (4.12)
k a+|B,|

L (7-23)/ (4+28)

(note that IIDjII2 ~ ) then

E g(t)-£(t) = (E Ago-Afo)D3(t) - (E Agl—Afl)Dz(t)
2 3
+ Af Dl(t) - of Do(t)
£(4) 2

+ )‘E —k-—-—-]% exp (-2mikt) . 4.13)
r+|B, |

N -

ITEagres

R \J - ’
' . SRR, 5§52 =«

- Pt

=y o

-

L ey gy —
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The function Dj(t) play the role of the functions Bj(t) of section 3.
Although their exact analytical forms depend on w, they are, like the

B,'s, successively odd and even, and are increasingly peaked near O

j
and 1 as X - 0,

We now consider the individual terms in (4.13). From (4.6) it

follows that

- -1
e 220 a0 - I mB A O4p)
- Y =)
Iola %04

o 33/ (28+4)

The denominator can be estimated to be . If Af2 # 0, the

numerator is
- - <+
= Af2 § :|B]|2(A+p]) 1'~ A 1/(28+4) .

In combination with D this gives a net contribution to the integrated

3

-~ AS/(23+4). 1f Afz = 0 the numerator is

A7/(28+4).

squared bias which is
= (f(3)(1) + f(3)(0))/2, giving a net contribution of order

If f(k)(o) = f(k)(l) =0 k = 2,3 the net contribution is 0(A2).

Next,

1, 5" 2 -1
at+] m|B,| (\ﬂk:)l .

1
E Ag -Af %‘ »
1+ }lez(upk)

The denominator is n-x-ll(28+4) and if f(z)(l) or f(z)(O) $ 0 the

numerator is = (f(z)(l) + f(z)(O))/Z. This gives a net contribution to




AS/(ZB-H;) .

the integrated squared bias of order If both second derivatives

are zero the numerator is

A b
, ~ Mf3z k 5~ A1/(2f3+t.)
A+|Bk|

7/(28+4)

giving a net contribution of order A If both second and third

S
. 3

derivatives vanish at 1 and O the net contribution is O(Az).

The last term in (4.11) can be estimated and makes a contribution to

the integrated squared bias of order AZ.

R e s Sy
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